به محفل ریاضی ایرانیان خوش آمدید! لطفا برای استفاده از تمامی امکانات عضو شوید
سایت پرسش و پاسخ ریاضی
+1 امتیاز
183 بازدید
در دبیرستان توسط erfanm

وزارت نفت کانالی بين بوشهر و ايلام حفر کرده است و قصد دارد لولة انتقال گازی را در آن قرار دهد. سطح مقطع لوله دايره و سطح مقطع کانال به شکل قسمتی از یک سهمی است.(سهمی نمودار یک چند جمله ای درجه دوم است.)اگر عرض و عمق کانال برابر $1$ متر باشد، قطر بزرگترین لوله ای که می توان در کانال قرار داد بطوری که با پایین ترین نقطه ی کانال تماس داشته باشد، چند سانتی متر است؟

enter image description here

1 پاسخ

+2 امتیاز
توسط zh
انتخاب شده توسط erfanm
 
بهترین پاسخ

مربعی به طول ضبع 1 را در نظر میگیریم و شکل زیر را طبق صورت مسئله در نظر میگیریم:

enter image description here

مطابق فرض مسئله، کانال به صورت سهمی است و مطابق شکل نقاط $(0,0), ( \frac{1}{2}, 1), (\frac{-1}{2}, 1) $ روی این سهمی قرار دارند. لذا اگر فرض کنیم که معادله سهمی به صورت

$$ y=a x^{2} $$

باشد آنگاه داریم:

$$ 1=a( \frac{1}{2})^{2} \longrightarrow a=4 $$

لذا معادله سهمی به صورت

$$y=4x^{2} $$

است. از طرفی دایره در مرکز بر این سهمی مماس است، پس معادله این دایره میتواند به صورت زیر باشد

$$ x^{2}+(y-r)^{2}=r^{2}$$

بنابراین با جایگذاری معادله اول در دوم داریم:

$$ \frac{y}{4} + y^{2}-2ry=0 $$

با مشتق گیری $ r$ بر حسب $ y $ داریم:

$$ \frac{dr}{dy}=0 \longrightarrow r=y+ \frac{1}{8} $$

لذا داریم:

$$\frac{y}{4} + y^{2}-2ry=\frac{y}{4} + y^{2}-2(y+ \frac{1}{8} )y=0 \longrightarrow y=0 \vee y= \frac{-1}{2} $$ $$ \Longrightarrow $$ $$r= \frac{1}{8} \vee r=- \frac{3}{8} $$

که دایره به شعاع $ r=-3/8$ خارج این سهمی است لذا ماکسیمم برابر با $r=1/8 $ است.

توسط fardina
ویرایش شده توسط erfanm
+1
آخر سر $r$ نمیتونه منفی باشه دیگه. چون طول شعاعه.
توسط zh
+2
تو حالتی که شما میگین اگه از معادله اول مشتق بگیریم ماکسیمم بدست میاد. ولی معادله دارای سه متغییر هستش چه جوری از این راه ماکسیمم بدست میاد؟؟
توسط zh
+2
کاری با منفی بودن r نداریم در حقیقت مقدار r هستش که موقعیت دایره و سهمی رو تعیین میکنه
توسط erfanm
+1
چرا  $y=4 x^{2}  $  رو تو معادله دایره جایگذاری میکنیم.
$y$ تو معادله دایره با $y$ تو معادله سهمی فرق دارند فقط در یک نقطه اونم مبدا برابر می شوند.
توسط zh
+2
درسته که فقط تو یه نقطه با هم برخورد دارند ولی چون دایره و سهمی در وضعیتی قرار دارن که بیشینه شعاع دایره رو سهمی تعیین میکنه، معادله سهمی رو تو دایره قرار دادم.

حمایت مالی


کانال تلگرام محفل ریاضی
امروز : تاریخ شمسی اینجا نمایش داده می‌شود
...