چنانچه محفل ریاضی را سودمند یافتید، لطفا برای حمایت از ما به کانال تلگرامی محفل ریاضی بپیوندید!
به محفل ریاضی ایرانیان خوش آمدید! لطفا برای استفاده از تمامی امکانات عضو شوید
+1 امتیاز
1,086 بازدید
سوال شده در دبیرستان و دانشگاه توسط کیوان عباس زاده
برچسب گذاری دوباره توسط fardina

تعیین کنید ماتریس زیر وارون پذیر است یا وارون ناپذیر : $$ \begin{bmatrix}54401 &57668 &15982&103790\\33223 & 26563&23165&71489\\36799&37189&16596&46152\\21689&55538&79922&51237 \end{bmatrix} $$

1 پاسخ

+1 امتیاز
پاسخ داده شده توسط کیوان عباس زاده

در واقع یک ماتریس وارون پذیر است هرگاه دترمینان آن ناصفر باشد . نشان می دهیم دترمینان ماتریس بالا عددی فرد است ( پس نتیجه می شود ناصفر است ) . برای این کار کافی است دترمینان ماتریس را به پیمانه $2$ محاسبه کنیم . پس ابتدا درایه های ماتریس را به پیمانه $2$ می نویسیم داریم : $$A=\begin{bmatrix}1 &0 &0&0\\1 & 1&1&1\\1&1&0&0\\1&0&0&1 \end{bmatrix}$$ حال داریم : $$det(A)=-1 \equiv 1\ \ \ \ (mod\ \ 2)$$ پس دترمینان ماتریس بالا عددی فرد است .

لطفا ما را در شبکه های اجتماعی دنبال کنید:
به محفل ریاضی ایرانیان خوش آمدید!
امروز : تاریخ شمسی اینجا نمایش داده می‌شود

♥ حمایت مالی

راهنمایی:

  • برای رفتن به سطر بعدی دو بار Enter بزنید.
  •  یک بار Enter یک فاصله محسوب می‌شود.
  •  _ایتالیک_ یا I و **پررنگ** یا B
  •  نقل‌قول با قراردادن > در ابتدای خط یا ❝
  • برای چپ به راست کردن متن کلیدهای Ctrl+Shift سمت چپ کیبورد را فشار دهید
  •  برای تایپ فرمول ابتدا روی ریاضی کلیک کرده و سپس به کمک آیکون‌های موجود فرمول را در بین دو علامت دلار

<math> $ $ </math>

بنویسید.

  •  برای اینکه فرمول در خط بعدی و وسط صفحه قرار گیرد دو علامت دلار اضافی بنویسید

<math> $$ $$ </math>


☑ راهنمایی بیشتر: راهنمای تایپ
38 نفر آنلاین
0 عضو و 38 مهمان در سایت حاضرند
بازدید امروز: 836
بازدید دیروز: 6817
بازدید کل: 4709978
...