به محفل ریاضی ایرانیان خوش آمدید! لطفا برای استفاده از تمامی امکانات عضو شوید
سایت پرسش و پاسخ ریاضی
+1 امتیاز
655 بازدید
سوال شده در دانشگاه توسط yosef.sobhi
ویرایش شده توسط fardina

آیا $ L^{1} (x) $ یک فضای هیلبرت است ؟ چرا؟

دارای دیدگاه توسط erfanm
ویرایش شده توسط erfanm
$ f=\chi_{ [0,1]}, g=\chi_{ [1,2]}  $در قانون متوازی الاضلاع صدق نمیکنند لذا$L_{1}$فضای هیلبرت نیست.
البته این مثال نقضی برای تمام $L_{p}$ غیر از $L_{2}$ است چون برای هر $p$ تنها زمانی قضیه متوازی الاضلاع برای این دو تابع برقرار میشه که $p=2$ باشد.

1 پاسخ

+2 امتیاز
پاسخ داده شده توسط fardina

خیر فضای هیلبرت نیست.

یک نرم $ \|.\|$ از یک ضرب داخلی القا می شود اگر و تنها اگر در قانون متوازی الاضلاع صدق کند یعنی: $$ \|x+y\|^2+\|x-y\|^2=2(\|x\|^2+\|y\|^2) $$

مثلا $f,g\in L^1[0,1] $ را به صورت $ f(x)=x $ و $ g(x)=1-x $ در نظر بگیرید. و خواهید دید که قانون متوازی الاضلاع در مورد نرم $ \|.\|_1 $ که به صورت $\|f\|_1=\int_0^1 |f|d\mu $ تعریف می شود برقرار نیست.

از بین $ L^p $ ها تنها $L^2 $ یک فضای هیلبرت است.

با توجه به اینکه اخیرا هزینه های نگهداری سایت افزایش چشمگیر چند برابری داشته، محفل ریاضی نیازمند حمایت مالی شما است.

حمایت مالی


کانال تلگرام محفل ریاضی
امروز : تاریخ شمسی اینجا نمایش داده می‌شود

ابزارها:

سرگرمی: سودوکو جدید

رسم نمودار: Geogebra جدید

...