Let $ f $ be nonnegative and Lebesgueintegrable in the interval $[0,1] $ ,and $n=1,2,3,... $ suppose that , for every integer
$ \int_0^1 f(x)^{n} dx= \int_0^1 f(x)dx $
Show that $ f $ must be $a.e. $ equal to the characteristic function $ \chi _{E} $ of some measurable set
$ E \subseteq [0,1] . $