در هر مثلث داریم:
$ \frac{a}{SinA} = \frac{b}{SinB} = \frac{c}{SinC} =2R , c^2=a^2+b^2-2abCosC$
$CotA= \frac{CosA}{SinA} = \frac{ \frac{b^2+c^2-a^2}{2bc} }{ \frac{a}{2R} } = \frac{R(b^2+c^2-a^2)}{abc} $
$ \Rightarrow \frac{CotC}{CotA+CotB}= \frac{ \frac{R(b^2+a^2-c^2)}{abc}}{ \frac{R(b^2+c^2-a^2)}{abc}+ \frac{R(a^2+c^2-b^2)}{abc}} = \frac{b^2+a^2-c^2}{b^2+c^2-a^2+a^2+c^2-b^2} = \frac{b^2+a^2-c^2}{2c^2}= \frac{2023c^2-c^2}{2c^2}= \frac{2022c^2}{2c^2} $
$=1011$
$ \Box $