$x \neq 1 \wedge x^5=1 \wedge (x^4+x^3+x^2+x+1)(x-1)=x^5-1 \Rightarrow x^4+x^3+x^2+x+1=0$
$ \Rightarrow x^4+x^2+1=-(x^3+x)=-x(x^2+1)$
$ \Rightarrow ( \frac{1}{x^2+x+1} + \frac{1}{x^2-x+1} )^5=( \frac{x^2-x+1+x^2+x+1}{(x^2+x+1)(x^2-x+1)} )^5=( \frac{x^2-x+1+x^2+x+1}{(x^2+1)^2-x^2} )^5=( \frac{2(x^2+1)}{x^4+x^2+1} )^5$
$=( \frac{2(x^2+1)}{-x(x^2+1)} )^5=(\frac{2}{-x})^5= \frac{-2^5}{x^5} $
$= \frac{-2^5}{1}=-2^5=-32$
$ \Box $