$x^2+x+1=0 \Rightarrow (x-1)(x^2+x+1)=(x-1).0 \Rightarrow x^3-1=0 \Rightarrow x^3=1$
$ \Rightarrow x^{49}+x^{50}+x^{51}+x^{52}+x^{53}=x^{49}(1+x+x^2+x^3+x^4)=x^{49}(0+1+x^3.x)$
$=x^{49}(1+x)=x^{49}+x^{50}=(x^3)^{16}.x+(x^3)^{16}.x^2=1^{16}.x+1^{16}.x^2=x+x^2=-1$
$ \Box $