$\frac{\text{log}(\text{sin}x)+\text{log}(\text{cos}x)}{\text{log(sin}y)-\text{log(cos}y)} =3\implies \frac{\text{log(sin}x\text{cos}x)}{\text{log(cot}x)}=3\implies
\text{sin}x\text{cos}x=\frac{\text{cos}^{3}x}{\text{sin}^{3}x}=\text{sin}x\text{cos}x\implies \text{cos}^{2}x=\text{sin}^{4}x\implies \text{sin}^{4}x+\text{sin}^{2}x-1=0\implies \text{sin}^{2}x=\frac{\sqrt{5}-1}{2}\implies \text{cos}^{2}x=\frac{3-\sqrt{5}}{2}$
$\text{cos}(x-y)=\text{sin}2x=\sqrt{4\text{sin}^{2}x\text{cos}^{2}x}=\sqrt{(\sqrt{5}-1)(3-\sqrt{5})}$