اولن می دانیم که:
$1^2+2^2+...+n^2= \frac{1}{6}n(n+1)(2n+1)$
$ \Rightarrow S_n=1^1-2^2+3^2+...+(-1)^{n-1}n^2=(1^2+2^2+3^2+...+n^2)-2(2^2+4^2+...+(2[ \frac{n}{2} ])^2$
$= \frac{1}{6} n(n+1)(2n+1)-2 \times 2^3(1^2+2^2+...+[ \frac{n}{2} ]^2)$
$= \frac{1}{6} n(n+1)(2n+1)-2^3( \frac{1}{6})[ \frac{n}{2} ]([ \frac{n}{2} ]+1)(2[ \frac{n}{2} ]+1)$
$ \Rightarrow S_{1395}+S_{1396}= \frac{1}{6}(1395)(1396)(2791)-2^3( \frac{1}{6} )(697)(698)(1395)$
$+\frac{1}{6}(1396)(1697)(2793)-2^3( \frac{1}{6} )(698)(699)(1397)=-1396$
$ \Box $