به محفل ریاضی ایرانیان خوش آمدید! لطفا برای استفاده از تمامی امکانات عضو شوید
سایت پرسش و پاسخ ریاضی
+1 امتیاز
237 بازدید
در دبیرستان توسط امیررضا صفوی نژاد (42 امتیاز)

اثبات کنید زاویه ی بین عقربه ی ساعت شمار و دقیقه شمار در ساعت h و دقیقه ی m , از رابطه ی | a = | 5/5m - 30h به دست می آید

1 پاسخ

+2 امتیاز
توسط fardinffa (418 امتیاز)
انتخاب شده توسط امیررضا صفوی نژاد
 
بهترین پاسخ

زاویه هر عقربه را نسبت به ساعت 12 می سنجیم.در هر دور 12 ساعت و 60 دقیقه داریم .نحوه حركت عقربه ها را با فرض آنكه ثانیه شمار نداریم بررسی می كنیم. برای گذشتن هر دقیقه ، دقیقه شمار یك واحد به جلو می رود.یك واحد دقیقه شمار برابر یك شصتم دور كامل است زیرا در هر دور 60 دقیقه داریم.در حقیقت هر واحد دقیقه برابر 6 درجه است .حال فاصله هر واحد ساعت برابر 30 درجه است زیرا در یك دور كامل 12 ساعت داریم.برای هر 60 دقیقه ،ساعت شمار یك واحد یعنی 30 درجه حركت می كند.چون این حركت تدریجی است،برای گذشتن هر دقیقه ،عقربه ساعت شمار،مقداری جابجا می گردد.این حركت تدریجی در 60 گام (60 دقیقه ) انجام می شود.یعنی در هر 1 ساعت عقربه ساعت شمار فاصله 30 درجه را در 60 گام طی می كند.یعنی برای هر دقیقه 0.5 واحد حركت می كند. با توجه به بحث بالا فرض كنید كه ساعت h و m دقیقه است.عقربه دقیقه شمار m واحد طی كرده است یعنی 6m درجه .و عقربه ساعت شمار در بین h و h+1 قرار دارد و در ضمن m گام بین این دو طی كرده است یعنی 30h+0.5m.پس زاویه نهایی قدر مطلق تفاضل این دو خواهد بود:

5.5m-30h


حمایت مالی

کانال تلگرام محفل ریاضی
امروز : تاریخ شمسی اینجا نمایش داده می‌شود
...