به نام خدا
در واقع میخواهید بدانید که چرا تساوی زیر درست است ($b,c,d\not=0$):
$$ \frac{a}{b}÷ \frac{c}{d}= \frac{a}{b} \cdot \frac{d}{c}$$
این تساوی اثبات سادهای دارد. برای اثبات آن، ابتدا مینویسیم:
$$ \frac{a}{b} ÷ \frac{c}{d}= \Large\frac{\big(\frac{a}{b}\big)}{\big(\frac{c}{d}\big)} $$
که بدیهی است. سپس کافی است که صورت و مخرج کسر را در $ \large\frac{d}{c} $ ضرب کنیم:
$$\Large\frac{\big(\frac{a}{b}\big)}{\big(\frac{c}{d}\big)}=\Large\frac{\big(\frac{a}{b}\big)\cdot\big(\frac{d}{c}\big)}{\big(\frac{c}{d}\big)\cdot\big(\frac{d}{c}\big)}= \frac{\big(\frac{a}{b}\big)\cdot\big(\frac{d}{c}\big)}{1}= \frac{a}{b}\cdot \frac{d}{c}$$
$$\large\therefore \frac{a}{b}÷ \frac{c}{d}= \frac{a}{b} \cdot \frac{d}{c}$$
پس حکم ثابت شد. $\blacksquare$