به محفل ریاضی ایرانیان خوش آمدید! لطفا برای استفاده از تمامی امکانات عضو شوید
سایت پرسش و پاسخ ریاضی
+1 امتیاز
122 بازدید
در دبیرستان و دانشگاه توسط amir7788 (1,114 امتیاز)

دو پاره خط EF و GH با قاعده ذوزنقه ABCD موازی می باشند بطوریکه EF ذوزنقه به دو قسمت همساحت و GH ذوزنقه را به دو شکل متشابه تقسیم می کند رابطه بین EF و GH رابیابید توضیحات تصویر

2 پاسخ

+1 امتیاز
توسط amirhm (31 امتیاز)
انتخاب شده توسط amir7788
 
بهترین پاسخ

توضیحات تصویر

+1 امتیاز
توسط

توضیحات تصویر

1_در شکل طبق سوال خط EF ذوزنقه رو به تو شکل هم مساحت تبدیل کرده S1=S2 پس :  h1(a+EF)=h2(b+EF)   و    h1/h2=(b+ EF)/(a+EF)

2_از طرفی MEF با MAB متشابه است                                                  

a√3/(2h1+a√3)=a/EF  پس  h1=√3(EF-a)/2

3_حالا از رابطه ای که در بخش اول بدست اومده h2  رو پیدا می‌کنیم         

h2=√3(EF×EF-a×a)/2(b+EF)

4_ حالا سراغ شکل دوم میریم که طبق سوال S1 و S2متشابه هستند          

a/GH=h3/h4   پس   a×h4=GH×h3

5_دوباره میدونیم که MAB و MGH  متشابه هستند                                  

a√3/ ( 2h3+a√3)=a/GH  پس  h3=√3(GH-a)/2

6_ حالا h3 رو تو رابطه بدست اومده در بخش 4 قرار میدیم برای جواب h4 

h4=√3(GH-a)/2 ×GH/a

7_ از طرفی میدونیم h1+h2=h3+h4                                                     

Gh×GH=a×EF + a(EF×EF - a×a)/( b+EF)


حمایت مالی

کانال تلگرام محفل ریاضی
امروز : تاریخ شمسی اینجا نمایش داده می‌شود
...