نشان دهید:
$\int _0^ \infty \frac{ln(1+ x^{2})sin( \frac{1}{x}) }{x} dx= \pi ( \gamma -Ei(-1))$
که در آن $\gamma $ ثابت اویلر و (x)$Ei$ برابر است با : $ \int_ {- \infty } ^x \frac{ e^{t} }{t } dt$
چگونه می توانم به محفل ریاضی کمک کنم؟
حمایت مالی
برای رفتن به سطر بعدی دو بار Enter بزنید.
یک بار Enter یک فاصله محسوب میشود.
_ایتالیک_ یا I و **پررنگ** یا B
نقلقول با قراردادن > در ابتدای خط یا ❝
برای چپ به راست کردن متن کلیدهای Ctrl+Shift سمت چپ کیبورد را فشار دهید
برای تایپ فرمول ابتدا روی ریاضی کلیک کرده و سپس به کمک آیکونهای موجود فرمول را در بین دو علامت دلار بنویسید:
<math>$ $</math>
برای اینکه فرمول در خط بعدی و وسط صفحه قرار گیرد دو علامت دلار اضافی بنویسید:
<math>$$ $$</math>
☑ راهنمایی بیشتر: راهنمای تایپ