$$ \frac{1}{2x+8 x^{3} } + \frac{1}{4x+64 x^{3} } + \frac{1}{8x+512 x^{3} } +....= \sum _ {n=1} ^ \infty \frac{1}{ 2^{n}x+ ( 2^{n} x)^{3} } ,tanhx=8x \sum _ {k=1} ^ \infty \frac{1}{ \pi ^{2} (2k-1)^{2} +4 x^{2} } \Longrightarrow tanh( \pi x)= \frac{8}{ \pi } \sum _ {k=1} ^ \infty \frac{x}{ (2k-1)^{2} +4 x^{2} } $$