حل:
به کمک تغییر متغیر $u:=x^n$ داریم:
$$u(0)=0^n=0,u(1)=1^n=1,du=nx^{n-1}dx(dx= \frac{1}{n}u^\frac{1-n}{n}du)$$
$$ \Rightarrow I:= \int_0^1 \frac{1}{ \sqrt{1-x^n}}dx= \frac{1}{n}\int_0^1 \frac{u^ \frac{1-n}{n}}{(1-u)^ \frac{1}{2}}du$$
$$= \frac{1}{n}\int_0^1u^{ \frac{1}{n}-1}(1-u)^{ \frac{1}{2}-1}du$$
$$= \frac{1}{n}B(\frac{1}{n}, \frac{1}{2})=\frac{1}{n}\frac{\Gamma(\frac{1}{n}).\Gamma(\frac{1}{2})}{ \Gamma(\frac{1}{n}+ \frac{1}{2})}$$
$$=\frac{\sqrt{\pi }\Gamma(\frac{1}{n})}{n\Gamma(\frac{1}{n}+\frac{1}{2})} $$
$ \Box$