$$\int \frac{Arctanx- \frac{e^{Lnx}}{1+x^2}}{(Arctanx)^2}dx=\int \frac{Arctanx- \frac{x}{1+x^2}}{(Arctanx)^2}dx$$
$$= \int \frac{dx}{Arctanx}-\int x.\frac{ \frac{1}{1+x^2} }{(Arctanx)^2}dx=\int \frac{dx}{Arctanx}- \int x.d( \frac{-1}{Arctanx} )$$
$$=\int \frac{dx}{Arctanx}+\int x.d( \frac{1}{Arctanx} )$$
$$=\int \frac{dx}{Arctanx}+ \frac{x}{Arctanx}- \int \frac{dx}{Arctanx} $$
$$=\frac{x}{Arctanx}+C$$
$ \Box $