در این استدلال فرض بر اینه (در کجای استدلال استفاده میشه؟) که $a$ حقیقی و مثبت است.:
$$f(\frac{2}{3})=1+2\sqrt{2} \Rightarrow a^\frac{2}{3}+a^\frac{-2}{3}=1+2\sqrt{2}\Rightarrow (a^\frac{1}{3})^2+(a^\frac{-1}{3})^2+2=3+2\sqrt{2}$$
$$\Rightarrow (a^\frac{1}{3}+a^\frac{-1}{3})^2=(1+\sqrt{2})^2\Rightarrow a^\frac{1}{3}+a^\frac{-1}{3}=1+\sqrt{2}$$
$$\Rightarrow (a^\frac{1}{3}+a^\frac{-1}{3})^3=(1+\sqrt{2})^3$$
$$ \Rightarrow (a^ \frac{1}{3})^3+(a^ \frac{-1}{3})^3+3a^ \frac{1}{3}a^ \frac{-1}{3} (a^ \frac{1}{3}+a^ \frac{-1}{3})=7+5\sqrt{2}$$
$$ \Rightarrow a+a^{-1}+3+3\sqrt{2}=7+5\sqrt{2}$$
$$\Rightarrow a+a^{-1}=4+2\sqrt{2}$$
$$(a^\frac{1}{2})^2+(a^\frac{-1}{2})^2+2=6+2\sqrt{2}$$
$$ \Rightarrow (a^\frac{1}{2}+a^\frac{-1}{2})^2=6+2\sqrt{2}$$
$$ \Rightarrow a^\frac{1}{2}+a^\frac{-1}{2}=\sqrt{6+2\sqrt{2}}$$
$$ \Rightarrow (a^\frac{1}{2}+a^\frac{-1}{2})^3=(\sqrt{6+2\sqrt{2}})^3$$
$$ \Rightarrow a^\frac{3}{2}+a^\frac{-3}{2}+3a^\frac{1}{2}.a^\frac{-1}{2}(a^\frac{1}{2}+a^\frac{-1}{2})=\sqrt{6+2\sqrt{2}}^3$$
$$ \Rightarrow f(\frac{3}{2})=\sqrt{6+2\sqrt{2}}^3-3\sqrt{6+2\sqrt{2}}$$
$\Box$