$$\tan (x) \in \mathbb{R}$$
$$\tan(x)+ \frac{1}{\tan(x)}= $$
$$\tan(x)+ \cot (x)= $$
$$ \frac{\sin(x)}{\cos(x)} + \frac{\cos(x)}{\sin(x)}=$$
$$ \frac{( \sin(x))^{2} +(\cos(x))^{2} }{\sin(x).\cos(x)}= $$
$$ \frac{1}{\sin(x).\cos(x)}= $$
$$ \frac{1}{ \frac{1}{2} \sin(2x)} $$
$$-1 \leq \sin(2x) \leq 1$$
$$ \frac{-1}{2} \leq \frac{1}{2} \sin(2x) \leq \frac{1}{2} $$
$$\frac{1}{ \frac{1}{2} \sin(2x)} \in (- \infty ,-2] \cup [2,+ \infty )$$
$$\tan(x)+ \frac{1}{\tan(x)} \in (- \infty ,-2] \cup [2, \infty )$$
$$if:\tan(x) > 0 \rightarrow \tan(x)+ \frac{1}{\tan(x)} \geq +2$$
$$if:\tan(x) < 0 \rightarrow \tan(x)+ \frac{1}{\tan(x)} \leq -2 $$