به محفل ریاضی ایرانیان خوش آمدید! لطفا برای استفاده از تمامی امکانات عضو شوید
سایت پرسش و پاسخ ریاضی

محفل ریاضی ایرانیان یک سایت پرسش و پاسخ برای تمامی کسانی است که ریاضی می خوانند. دانش آموزان، دانشجویان و اساتید ریاضی اینجا هستند. به ما ملحق شوید:

عضویت

هر سوال ریاضی که دارید می توانید بپرسید

سوال بپرسید

می توانید به سوالات پاسخ دهید

سوالات

امتیاز بگیرید و به دیگران امتیاز دهید

بدون پاسخ

Visanil
+2 امتیاز
2,127 بازدید
در دبیرستان توسط Mohsen94 (486 امتیاز)
ویرایش شده توسط AmirHosein

بفرض A، B و C سه مجموعه باشند. اگر داشته باشیم A\cap B=A\cap C و B-A=C-A، آنگاه ثابت کنید که B=C است.

توسط Taha1381 (1,789 امتیاز)
دو رابطه را اجتماع بزنید و فاکتور بگیرید.
توسط Mohsen94 (486 امتیاز)
ممنون
چطوری؟
توسط fardina (17,412 امتیاز)
+2
لطفا عنوان سوال رو ویرایش کنید.
توسط kazomano (2,561 امتیاز)
+1
یه عضو دلخواه توی B درنظر بگیرید. اگه این عضو توی A باشه اونوقت بنا به رابطه‌ی اولی تو C قرار می‌گیره. اگه این عضو تو A نباشه بنا به رابطه ی دوم تو C قرار میگره پس B زیرمجموعه C به روش مشابه C زیرمجموعه B پس B=C.

1 پاسخ

+5 امتیاز
توسط erfanm (13,871 امتیاز)
انتخاب شده توسط Mohsen94
 
بهترین پاسخ
(A \cap B) \cup (B-A)=(A \cap B) \cup (B \cap A' )= B \cap (A \cup A')=B

از طرف دیگر داریم:

(A \cap C) \cup (C-A)=(A \cap C) \cup (C \cap A' )= C \cap (A \cup A')=C

با توجه به برابری های داده شده داریم:

(A \cap B) \cup (B-A) = (A \cap C) \cup (C-A)
...