$$\displaystyle \lim_{x\to 0} \cos(x)^\frac{1}{x^2}=\lim_{x\to 0}e^{\frac{1}{x^2}\ln \cos x}$$
$$\displaystyle \lim_{x\to 0} \frac{1}{x^2}\ln \cos x = \lim_{x\to 0} \frac{1}{x^2}\ln \sqrt{1-\sin^2x}=\frac{1}{2}\lim_{x\to 0} \frac{\sin ^{2}x}{x^{2}}\frac{\ln (1-\sin ^{2}x)}{\sin ^{2}x}=$$
$$\displaystyle \frac{1}{2}\lim_{x\to 0}\left(\frac{\sin x}{x}\right)^2\lim_{y\to 0}\frac{\ln (1-y)}{y}=\frac{1}{2}\cdot 1 \cdot (-1) = -\frac{1}{2}$$
$$\displaystyle \Rightarrow \lim_{x\to 0} \cos(x)^\frac{1}{x^2}=e^{-\frac{1}{2}}=\frac{1}{\sqrt{e}}$$
در مسیر حل از این قضیه ها استفاده شده :
$$\cos x =\sqrt{1-\sin^2 x}\\ \lim_{x \to 0}\dfrac{\sin x}{x}=1 \\ \lim_{x\to 0}\dfrac{\ln (1+(-x))}{-x}=-1$$