به محفل ریاضی ایرانیان خوش آمدید! لطفا برای استفاده از تمامی امکانات عضو شوید
0 امتیاز
1,406 بازدید
در دبیرستان توسط rezasalmanian (872 امتیاز)
ویرایش شده توسط good4us

در عبارت مقابل اگر $ \frac{23^{x} }{ 23^{y} } = \frac{10}{5} $باشد حاصل $ 2^{x-y} $ را بیابید.موقع تایپ میگه اطلاعات بیش تر بنویسید نمی دونم چی بنویسم غیر از صورت سوال.

مرجع: مبتکران هشتم
توسط admin (1,760 امتیاز)
حداقل طولی برای متن سوال در نظر گرفته شده تا شما مساله را کامل توضیح دهید و تلاش خود برای حل مساله را بنویسید و بگید چه زحمتی کشیدید و در کجا گیر کردید. که متاسفانه حالا این رو رعایت نکردید. الان میتونید ویرایش کنید و این مورد رو بنویسید چون اینطوری متن سوال تان جالب نیست!
توسط rezasalmanian (872 امتیاز)
تساوی اول داده مسئله می باشد.مقدار عددی یا جبری تساوی دوم را می خواهد پرسیدید که چه زجمتی کشیدید می تونم بگم چهار صفحه کاغذ سیاه کردم به جواب نرسیدم.متن سوال همین است که نوشتم نمی دونم چی را باید اضافه کنم به سوال که مقبول واقع شود .من 23 به توان xمنهایyرا برابر با 2 قرار دادم به جواب نرسیدم سپس این عبارت را بر11/5 به توان xمنهای y تقسیم کردم باز به جواب نرسیدم.این بود تلاش من برای جل سوال که پرسیدید.
توسط admin (1,760 امتیاز)
"متن سوال همین است که نوشتم نمی دونم چی را باید اضافه کنم به سوال که مقبول واقع شود":
میدونم که متن سوال همینه. شما پرسیده بودید "موقع تایپ میگه اطلاعات بیش تر بنویسید نمی دونم چی بنویسم غیر از صورت سوال." و  من راهنمایی کردم تلاش برای حل مساله باید نوشته بشه. همین تلاشی که شما برای حل مساله اشاره فرمودید رو میتونستید در متن سوال بنویسید.
توسط good4us (7,356 امتیاز)
درعنوان نوشته اید 2به توان xمنهای یک؟؟؟ ودر متن نوشته اید 2 به توان x-y
توسط rezasalmanian (872 امتیاز)
عنوان را نتونستم ویرایش کنم. راهنمایی کنید.2 به توان xمنهای yدرست است.

1 پاسخ

0 امتیاز
توسط good4us (7,356 امتیاز)

$ 23^{x-y}=2 $ پس $ log_{ 23}2=x-y $

$ 2^{x-y}= 2^{log_{ 23}2} \simeq 1.17 $
توسط rezasalmanian (872 امتیاز)
–1
لطفا با روش ساده تر برای شاگرد کلاس 7 حل شود تشکر.اینشتین مردی بود که می توانست سوال های ساده ی بسیاری بپرسد. و آنچه کار وی نشان داد این است که هرگاه پاسخ ها نیز ساده باشند آنگاه می توانید تفکر الهی را بشنوید.
بزرگترین ریاضیدانان، همچون ارشمیدس، نیوتن و گاوس، همواره نظریه و کاربردها را در اندازه ی یکسان در هم می آمیزند.
...