$ lim_{x\to - \infty } \frac{3x^2+x+ x\sqrt{9x^{2} +x}}{4x+1+ |3x-4|}=lim_{x\to - \infty } \frac{(3x^2+x)^2 -x^2(9x^{2} +x)}{(x+5)(3x^2+x- x\sqrt{9x^{2} +x})}=lim_{x\to - \infty } \frac{5x^3+x^2}{(x+5)(6x^2+x)}=lim_{x\to - \infty } \frac{5x^3+x^2}{6x^3}=\color{red}{ \frac{5}{6}} $