به محفل ریاضی ایرانیان خوش آمدید! لطفا برای استفاده از تمامی امکانات عضو شوید
سایت پرسش و پاسخ ریاضی
+1 امتیاز
74 بازدید
در دبیرستان توسط mansour (558 امتیاز)
ویرایش شده توسط قاسم شبرنگ

مطلوب است محاسبه $x$ و $y$ در صورتی که: $ \sqrt{x} (1+ \frac{1}{x+y} )= \frac{6}{4} $ و$(1- \frac{1}{x+y} ) \sqrt{y}= \frac{6}{5} $ برای محاسبه؛ داخل پرانتز ها را a و b گرفته؛ از اتحاد ها بهره می بریم.

2 پاسخ

0 امتیاز
توسط
انتخاب شده توسط mansour
 
بهترین پاسخ

$$a=1+ \frac{1}{x+y} ;b=1- \frac{1}{x+y} \Longrightarrow a+b=2;a-b= \frac{2}{x+y} \Longrightarrow a \sqrt{x} = \frac{6}{4} ;b \sqrt{y} = \frac{6}{5} \Longrightarrow a^{2} = \frac{9}{x} ; b^{2} = \frac{36}{25y} \Longrightarrow a^{2} - b^{2} = \frac{9}{4x} - \frac{36}{25y} \Longrightarrow \frac{4}{x+y} = \frac{9}{4x} - \frac{36}{25y} \Longleftrightarrow 144 x^{2} -225 y^{2} +319xy=0 \Longrightarrow 144 ( \frac{x}{y} )^{2} +319 \frac{x}{y} -225=0 \Longrightarrow \sqrt{ \Delta } =481 \Longrightarrow \frac{x}{y} = \frac{9}{16} \Longrightarrow x=9 k^{2} ;y=16 k^{2} \Longrightarrow \sqrt{x} (1+ \frac{1}{x+y} )= \frac{6}{4} \Longrightarrow3k(1+ \frac{1}{25 k^{2} } )= \frac{3}{2} \Longrightarrow 50 k^{2} -25k+2=0 \Longrightarrow k= \frac{2}{5} \Longrightarrow x= \frac{36}{25} ;y= \frac{64}{25};k= \frac{1}{10} \Longrightarrow x= \frac{9}{100} ;y= \frac{16}{100} $$

توسط قاسم شبرنگ (3,185 امتیاز)
اواخر استدلال ایراد دارد.
0 امتیاز
توسط قاسم شبرنگ (3,185 امتیاز)
ویرایش شده توسط قاسم شبرنگ

قرار دهید $a:= \sqrt{x} $ و $b:= \sqrt{y} $.بنابراین چون $a \neq 0,b \neq 0$ (چرا؟) داریم:

$(1+ \frac{1}{a^2+b^2} )= \frac{6}{4a} \wedge (1- \frac{1}{a^2+b^2} )= \frac{6}{5b} $

حالا قرار دهید $X:=1+ \frac{1}{a^2+b^2} $ و $Y:=1- \frac{1}{a^2+b^2}$.بنابراین:

$X+Y=2,X-Y= \frac{2}{a^2+b^2} ,X= \frac{6}{4a} ,Y= \frac{6}{5b} \Rightarrow \frac{36}{16a^2} - \frac{36}{25b^2} = \frac{4}{a^2+b^2} $

$\Rightarrow \frac{9}{16a^2} - \frac{9}{25b^2} = \frac{1}{a^2+b^2}$

بعد از ساده کردن این کسر نتیجه میگیریم که:

$225( \frac{b}{a} )^4-319( \frac{b}{a} )^2-144=0 \Rightarrow (\frac{b}{a})^2 = -\frac{16}{9} \vee \frac{9}{25} $

واضح است که جواب منفی قابل قبول نیست و چون $ \frac{b}{a} >0$ پس باید $ \frac{b}{a} = \frac{4}{3} $.

$ \Rightarrow \frac{Y}{{X} } = \frac{3}{5} \Rightarrow X= \frac{5}{4} ,Y= \frac{3}{4} \Rightarrow a= \frac{6}{5} ,b= \frac{8}{5} \Rightarrow x= \frac{36}{25} ,y= \frac{64}{25} $

$ \Box $

توسط قاسم شبرنگ (3,185 امتیاز)
با عرض معذرت این جواب نادرسته.به محض یافتن جواب اصلاح می شود.
توسط قاسم شبرنگ (3,185 امتیاز)
جواب قبلی اصلاح شد.

حمایت مالی

کانال تلگرام محفل ریاضی
امروز : تاریخ شمسی اینجا نمایش داده می‌شود
...