$$ I_{1} = \int _ {- \pi } ^ \pi \frac{xsinxArccot( 2024^{x} )}{1+ cos^{2n} x} dx \wedge x=-t Summary \wedge I_{2}= \int _ {- \pi } ^ \pi \frac{xsinxArccot( 2024^{-x} )}{1+ cos^{2n} x} dx \Longrightarrow I_{1} + I_{2} = 2I=\int _ {- \pi } ^ \pi \frac{xsinx}{1+ cos^{2n} x} [Arccot( 2024^{x} )+Arccot( 2024^{-x} )] dx \wedge Arccot ( 2024^{x} )+Arccot ( \frac{1}{ 2024^{x} } )= \frac{ \pi }{2} $$