$tan(x+ \frac{ \pi }{4} )= \frac{tanx+tan(\frac{ \pi }{4})}{1-tanx.tan(\frac{ \pi }{4})}= \frac{1+tanx}{1-tanx} $
حالا قرار دهید:
$x_n:= \gamma -(H_n-log(n)) \Rightarrow \lim_{n\to \infty } x_n=0$(چرا؟)
$ \Rightarrow \lim_{n\to \infty } (1+tanx_n)^ \frac{1}{sinx_n}=\lim_{n\to \infty } [(1+tanx_n)^ \frac{cosx_n}{sinx_n}]^{ \frac{1}{cosx_n} }$
$=\lim_{n\to \infty } [(1+tanx_n)^ \frac{1}{tanx_n}]^{ \frac{1}{cosx_n} }= \lim_{n\to \infty } e^{\frac{1}{cosx_n}}=e^1=e$(چرا؟)
$, \lim_{n\to \infty } (1-tanx_n)^ \frac{1}{sinx_n}=\lim_{n\to \infty } [(1-tanx_n)^ \frac{-cosx_n}{sinx_n}]^{\frac{-1}{cosx_n} }$
$=\lim_{n\to \infty } [(1-tanx_n)^ \frac{-1}{tanx_n}]^{ \frac{-1}{cosx_n} }= \lim_{n\to \infty } e^{-\frac{1}{cosx_n}}=e^{-1} $(چرا؟)
$ \Rightarrow \lim_{n\to \infty }[tan( \gamma -H_n+ \frac{ \pi }{4} +log(n))]^ \frac{1}{sin( \gamma -H_n+log(n))}= \frac{\lim_{n\to \infty } (1+tanx_n)^ \frac{1}{sinx_n}}{\lim_{n\to \infty } (1-tanx_n)^ \frac{1}{sinx_n}}= \frac{e}{e^{-1}} =e^2$
$ \Box $