$$u_n=\sum_{i=0}^{n-1}\sum_{j=i+1}^{n+1} {n+1\choose j}{n\choose i}=\sum_{i=0}^{n-1}{n\choose i}\sum_{j=i+1}^{n+1} {n+1\choose j}$$
$$u_{n+1}=\sum_{i=0}^{n}\left[{n\choose i}+{n\choose i-1}\right]\sum_{j=i+1}^{n+2} \left[{n+1\choose j}+{n+1\choose j-1}\right]$$
$u_{n+1}=a_n+b_n+c_n+d_n$
$$a_n=\sum_{i=0}^{n}{n\choose i}\sum_{j=i+1}^{n+2} {n+1\choose j}=1+\sum_{i=0}^{n-1}{n\choose i}\sum_{j=i+1}^{n+1} {n+1\choose j}=1+u_n$$
$$b_n=\sum_{i=0}^{n}{n\choose i}\sum_{j=i+1}^{n+2} {n+1\choose j-1}=\sum_{i=0}^{n}{n\choose i}\sum_{j=i}^{n+1} {n+1\choose j}\\=\sum_{i=0}^{n}{n\choose i}{n+1\choose i}+\sum_{i=0}^{n}{n\choose i}\sum_{j=i+1}^{n+1} {n+1\choose j}\\=\sum_{i=0}^{n}{n\choose i}{n+1\choose i}+u_n+1$$
$$c_n=\sum_{i=0}^{n}{n\choose i-1}\sum_{j=i+1}^{n+2} {n+1\choose j}=\sum_{i=0}^{n-1}{n\choose i}\sum_{j=i+2}^{n+1} {n+1\choose j}\\=u_n-\sum_{i=0}^{n-1}{n\choose i}{n+1\choose i+1}$$
$$d_n=\sum_{i=0}^{n}{n\choose i-1}\sum_{j=i+1}^{n+2} {n+1\choose j-1}=\sum_{i=0}^{n-1}{n\choose i}\sum_{j=i+2}^{n+2} {n+1\choose j-1}\\=\sum_{i=0}^{n-1}{n\choose i}\sum_{j=i+1}^{n+1} {n+1\choose j}=u_n$$
,
$$u_{n+1}=4u_n+2+\sum_{i=0}^{n}{n\choose i}{n+1\choose i}-\sum_{i=0}^{n-1}{n\choose i}{n+1\choose i+1}\\=4u_n+3+\sum_{i=0}^{n}{n\choose i}{n+1\choose i}-\sum_{i=0}^{n}{n\choose i}{n+1\choose i+1}$$
Vandermonde's identity:
$$\sum_{i=0}^{n}{n\choose i}{n+1\choose i}=\sum_{i=0}^{n}{n\choose i}{n+1\choose i+1}={2n+1\choose n+1}$$
$u_{n+1}=4u_n+3$, $u_1=3$ ($u_0=0$ ). $u_n=4^n-1$.