به طور کلی میخواهیم این نوع انتگرال هارو حل کنیم ابتدا از جز به جز انتگرال رو بدست میاوریم این کار را تا زمانی ادامه میدهیم که به انتگرال اولی برسیم خواهیم داشت :
$$\eqalign{
& I = \int {{e^{a\theta }}} \;\sin b\theta \;d\theta \cr
& \,\,\,\, = {1 \over a}{e^{a\theta }}\sin b\theta - {b \over a}\int {{e^{a\theta }}\cos b\theta \,d\theta } \cr
& \,\,\,\, = {1 \over a}{e^{a\theta }}\sin b\theta - {b \over a}\left[ {{1 \over a}{e^{a\theta }}\cos b\theta + {b \over a}\int {{e^{a\theta }}\sin b\theta d\theta} } \right] \cr
& \,\,\,\, = {1 \over a}{e^{a\theta }}\sin b\theta - {b \over a}\left[ {{1 \over a}{e^{a\theta }}\cos b\theta + {b \over a}I} \right] \cr
& \,\,\,\, = {1 \over a}{e^{a\theta }}\sin b\theta - {b \over {{a^2}}}{e^{a\theta }}\cos b\theta - {{{b^2}} \over {{a^2}}}I \cr} $$
حال $I$ رو بدست میاوریم :
$$\eqalign{
& {{{a^2} + {b^2}} \over {{a^2}}}I = {1 \over a}{e^{a\theta }}\sin b\theta - {b \over {{a^2}}}{e^{a\theta }}\cos b\theta \cr
& I = {a \over {{a^2} + {b^2}}}{e^{a\theta }}\sin b\theta - {b \over {{a^2} + {b^2}}}{e^{a\theta }}\cos b\theta \cr} $$
در نتیجه :
$$\boxed{I = {1 \over {{a^2} + {b^2}}}{e^{a\theta }}\left[ {a\sin b\theta - b\cos b\theta } \right]}$$