به محفل ریاضی ایرانیان خوش آمدید! لطفا برای استفاده از تمامی امکانات عضو شوید
سایت پرسش و پاسخ ریاضی
+2 امتیاز
647 بازدید
در دانشگاه توسط 0arezoo (85 امتیاز)
ویرایش شده توسط fardina

ثابت کنید $\mathbb Q$به عنوان$\mathbb Z$مدول زیر مدول ماکسیمال ندارد.

مرجع: جزوه جبر دکتر اکبری

1 پاسخ

+1 امتیاز
توسط erfanm (13,856 امتیاز)

از برهان خلف استفاده می کنیم. فرض کنید $\mathbb Q$به عنوان$\mathbb Z$مدول دارای زیر مدول ماکسیمالی مانند $ H $ باشد چون ماکسیمال است پس $ \frac{\mathbb Q}{H} $ یک $\mathbb Z$مدول ساده و دوری است .اما از طرف دیگر هر $\mathbb Z$ مدول دوری با$ \frac{\mathbb Z}{ < a>} $ یکریخت است پس داریم:

$ \frac{\mathbb Q}{H} \cong \frac{\mathbb Z}{ < a>} $

اما این بدین معنی است که$\mathbb Z$ یکریختی ای بین این دو وجود دارد اما هر $\mathbb Z$همریختی از $\frac{\mathbb Q}{H} $ به $ \frac{\mathbb Z}{ < a>} $ همریختی صفر خواهد بود و این با اینکه $ \frac{\mathbb Z}{ < a>} $ در تناقض است.

(فرض کنید که $ \varphi : \frac{\mathbb Q}{H} \rightarrow \frac{\mathbb Z}{ < a>} $ تعریف شده باشد به ازای هر $ x+H $ در $ \frac{\mathbb Q}{H} $ داریم:

$ \varphi (x+h)= \varphi (a( \frac{x}{a} +H))=a \varphi ( \frac{x}{a} +H)=0$
سوال شده فروردین ۲۴, ۱۳۹۴ در دانشگاه توسط 0arezoo (85 امتیاز)
ویرایش شده فروردین ۲۶, ۱۳۹۴ توسط fardina
$\mathbb Q$به عنوان$\mathbb Z$مدول دارای زیر مدول ماکسیمالی مانند$H$باشد آنگاه$ \frac{Q}{H}$ یک $\mathbb Z$مدول دوری است

حمایت مالی

کانال تلگرام محفل ریاضی
امروز : تاریخ شمسی اینجا نمایش داده می‌شود
...