به محفل ریاضی ایرانیان خوش آمدید! لطفا برای استفاده از تمامی امکانات عضو شوید
+3 امتیاز
239 بازدید
سوال شده در دبیرستان و دانشگاه توسط

عدد $ \pi^e $ بزرگتر است یا $ e^ \pi $ ؟ ( $ e$ عدد نپر است)

6 پاسخ

+4 امتیاز
پاسخ داده شده توسط

$$x>e\implies \frac1x<\frac1e\implies \int_e^{\pi}\frac1x\,dx<\int_e^{\pi}\frac1e\,dx\implies \log \pi < \frac{\pi}e\implies \pi^e<e^\pi$$

+3 امتیاز
پاسخ داده شده توسط

کافی است تابع $f(x)=\frac{\ln x}x$ را در نظر بگیرید و مشاهده کنید برای $x> e$ نزولی است و لذا $f(e)> f(\pi)$ که از آنجا به $e^\pi> \pi^e$ خواهید رسید.

دارای دیدگاه توسط
آفرین خیلی خوب بود  !
دارای دیدگاه توسط
سلام  . اصل مطلب همینه که بدونیم اون تابع از کجا اومده ؟
دارای دیدگاه توسط
+2
حقیقتش من این سوالو چند سال پیش دیده بودم نمیخوام ایده رو به خودم نسبت بدم. ولی فکر کنم روند اثبات نشون میده چرا باید همچین چیزی به ذهنمون برسه. چرا که $e^\pi<\pi^e$ اگر وتنها اگر با ln گرفتن
 $\frac{\ln e}e<\frac{\ln\pi}\pi$
شاید شما بتونید تابع دیگه ای در نظر بگیرید یا روش دیگه ای پیدا کنید.
+3 امتیاز
پاسخ داده شده توسط
ویرایش شده توسط

می دانیم $ e^{y} >1+y $برای هر $y>0$.قرار می دهیم $y= \frac{x-e}{e} $ به راحتی نتیجه می شود $ e^{ \frac{1}{e} } > x^{ \frac{1}{x} } $. حال قرار می دهیم $x= \pi $و مسئله حل می شود.این اثباتی قرن نوزدهمی از جاکوب استینر بود.

روش دوم سطح زیر نمودار تابع $y=lnx$ بین $x=e$و $x= \pi $و $y=0$ رو درنظر می گیریم.بدیهیه که $( \pi -e)ln \pi > \int_e^ \pi lnxdx $پس داریم $ ( \pi -e)ln \pi > \pi ln \pi - \pi $یا $ \pi >eln \pi $پس $ e^{ \pi } > \pi ^{e} $.

+3 امتیاز
پاسخ داده شده توسط

enter image description here

+2 امتیاز
پاسخ داده شده توسط

$$\displaystyle \pi \ne e$$

$$e^x > 1 + x \rightarrow x \neq 0 $$

$$e^{\pi/e -1} > \pi/e$$

$$e^{\pi/e} > \pi$$

$$e^{\pi} > \pi^e$$

دارای دیدگاه توسط
این همون اثبات بالائیه
دارای دیدگاه توسط
@kazomano
بله شما درس میفرمایید . توجه نکردم که شما با این روش اثبات کردید.
–1 امتیاز
پاسخ داده شده توسط
ویرایش شده توسط

سوال آسونیه!

e=2.71828182845905

π=3.14159265358979

پس e به توان π زیادتره

به محفل ریاضی ایرانیان خوش آمدید!
کانال تلگرام محفل ریاضی
امروز : تاریخ شمسی اینجا نمایش داده می‌شود
حمایت مالی
...