$$\int_a^b f(x)\ \mathrm dx=\int_a^b f(a+b-x)\ \mathrm dx$$
$$ I=\int_0^{\frac{ \pi }{2}} \frac{\sin^{1395}x}{\sin^{1395}x + \cos^{1395}x}\ \mathrm dx = \int_0^{\frac{ \pi }{2}} \frac{\sin^{1395}(\frac\pi2-x)}{\sin^{1395}(\frac\pi2-x) + \cos^{1395}(\frac\pi2-x)}\ \mathrm dx$$
$$I=\int_0^{\frac{ \pi }{2}} \frac{\cos^{1395}x}{\sin^{1395}x + \cos^{1395}x}\ \mathrm dx$$
$$2I=\int_0^{\frac{ \pi }{2}} \frac{\sin^{1395}x+\cos^{1395}x}{\sin^{1395}x + \cos^{1395}x}\ \mathrm dx=\int_0^{\frac\pi2}\mathrm dx=\frac\pi2$$
$$I=\frac\pi4$$