به محفل ریاضی ایرانیان خوش آمدید! لطفا برای استفاده از تمامی امکانات عضو شوید
+1 امتیاز
364 بازدید
در دبیرستان توسط A Math L (2,400 امتیاز)

اگر $x,y \geq 0$ و $x^3+y^3 \leq x+y$ نشان دهید $x+y \leq 2$

من نامساوی های زیر رو بدست آوردم شاید بدرد بخوره :

$x+y \geq x^2+y^2$

$xy+1 \geq x^2+y^2$

توسط kazomano (2,561 امتیاز)
اگه این نامساوی ها رو به دست آوردی برای توان دوم x+y  از کوشی شوارتز استفاده کن تا مسئله حل بشه.
توسط A Math L (2,400 امتیاز)
مرسی حل شد .
توسط kazomano (2,561 امتیاز)
خواهش میکنم.جوابت رو منتشر کن.

1 پاسخ

+1 امتیاز
توسط A Math L (2,400 امتیاز)

چون : $x^3+y^3-2x^2-2y^2+x+y \geq 0$ (اگه تجزیه بشه به این صورت در میاد $x(x-1)^2+y(y-1)^2$ که بزرگتر مساوی صفره ) با استفاده از فرض میتوان نوشت : $2(x+y)-2(x^2+y^2) \geq 0$

$x+y \geq x^2+y^2$

طبق نامساوی کوشی داریم: $(x+y)^2 \leq 2(x^2+y^2) \leq 2(x+y)$

در نتیجه $x+y \leq 2$

این چرخ فلک که ما در او حیرانیم<br> فانوس خیال از او مثالی دانیم<br> خورشید چراغ دان و عالم فانوس<br> ما چون صوریم کاندرو حیرانیم
...